Article ID Journal Published Year Pages File Type
8032592 Thin Solid Films 2018 6 Pages PDF
Abstract
The present study focused on nitrogen doped Al2O3 thin films using atomic layer deposition, varying the deposition temperature from 55 to 170 °C. Al2O3 thin film growth rate and electrical properties were mostly dependent on deposition temperature. Nitrogen concentration decreased from 2.7 to 2.4% with increasing deposition temperature. X-ray photoelectron spectroscopic analysis confirmed that nitrogen doping in Al2O3 decreased formation of oxygen related defects, including non-lattice oxygen. Surface morphology analyses also showed that N-doping reduced Al2O3 film surface roughness. Reduced oxygen related defects significantly reduced leakage current by 1000 times when comparing with as-deposited films. Minimum leakage current (5 × 10−10 A/cm2) was observed for N-doped Al2O3 film deposited at 170 °C and post-annealed at 400 °C, including a decrease by 10 times through N-doping.
Related Topics
Physical Sciences and Engineering Materials Science Nanotechnology
Authors
, , , ,