Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
8034387 | Thin Solid Films | 2015 | 5 Pages |
Abstract
We report on the electrical, optical and physical properties of Cu2ZnSnSe4 solar cells using an absorber layer fabricated by selenization of sputtered Cu, Zn and Cu10Sn90 multilayers. A maximum active-area conversion efficiency of 10.4% under AM1.5G was measured with a maximum short circuit current density of 39.7Â mA/cm2, an open circuit voltage of 394Â mV and a fill factor of 66.4%. We perform electrical and optical characterization using photoluminescence spectroscopy, external quantum efficiency, current-voltage and admittance versus temperature measurements in order to derive information about possible causes for the low open circuit voltage values observed. The main defects derived from these measurements are strong potential fluctuations in the absorber layer as well as a potential barrier of the order of 133Â meV at the back side contact.
Related Topics
Physical Sciences and Engineering
Materials Science
Nanotechnology
Authors
S. Oueslati, G. Brammertz, M. Buffière, H. ElAnzeery, O. Touayar, C. Köble, J. Bekaert, M. Meuris, J. Poortmans,