| Article ID | Journal | Published Year | Pages | File Type |
|---|---|---|---|---|
| 803751 | Mechanics Research Communications | 2006 | 10 Pages |
Under certain loading conditions a crack surface may undergo partial sliding (slip). Such slip may be triggered by non-uniformity of frictional characteristics along the crack surface, variability of applied stresses or curvilinearity of a crack path. In the present work we study the influence of a curvilinear shape of a crack on slip evolution. The analysis is carried out for the case of a two-dimensional circular arc crack. Initiation and propagation of a slip zone is investigated based on the criterion that the shear stress intensity factor vanishes at endpoints of the slip zone. Two case scenarios are studied: first, when slip is attributed to the non-uniform distribution of a coefficient of friction and, second, when slip is initiated by the far field compressive loads. The curvilinear effects are estimated by comparing the obtained solutions with the ones for a straight crack. Analytical expressions for the stress intensity factors (SIFs) derived in this work may also present certain interest of their own.
