Article ID Journal Published Year Pages File Type
8037993 Ultramicroscopy 2016 7 Pages PDF
Abstract
Revealing strains on the unit-cell level is essential for understanding the particular performance of materials. Large-scale strain variations with a unit-cell resolution are important for studying ferroelectric materials since the spontaneous polarizations of such materials are strongly coupled with strains. Aberration-corrected high-angle-annular-dark-field scanning transmission electron microscopy (AC-HAADF-STEM) is not so sensitive to the sample thickness and therefore thickness gradients. Consequently it is extremely useful for large-scale strain determination, which can be readily extracted by geometrical phase analysis (GPA). Such a combination has various advantages: it is straightforward, accurate on the unit-cell scale, relatively insensitive to crystal orientation and therefore helpful for large-scale. We take a tetragonal ferroelectric PbTiO3 film as an example in which large-scale strains are determined. Furthermore, based on the specific relationship between lattice rotation and spontaneous polarization (Ps) at 180° domain-walls, the Ps directions are identified, which makes the investigation of ferroelectric domain structures accurate and straightforward. This method is proposed to be suitable for investigating strain-related phenomena in other ferroelectric materials.
Related Topics
Physical Sciences and Engineering Materials Science Nanotechnology
Authors
, , ,