Article ID Journal Published Year Pages File Type
8038150 Ultramicroscopy 2015 8 Pages PDF
Abstract
To fully understand and control materials and their properties, it is of critical importance to determine their atomic structures in all three dimensions. Recent revolutionary advances in electron optics - the inventions of geometric and chromatic aberration correctors as well as electron source monochromators - have provided fertile ground for performing optical depth sectioning at atomic-scale dimensions. In this study we theoretically demonstrate the imaging of top/sub-surface atomic structures and identify the depth of single dopants, single vacancies and the other point defects within materials by large-angle illumination scanning transmission electron microscopy (LAI-STEM). The proposed method also allows us to measure specimen properties such as thickness or three-dimensional surface morphology using observations from a single crystallographic orientation.
Related Topics
Physical Sciences and Engineering Materials Science Nanotechnology
Authors
, , , ,