Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
8038227 | Ultramicroscopy | 2015 | 10 Pages |
Abstract
For full three-dimensional information retrieval from transmission electron microscope data, retrieving the third-dimension (beam-direction) information is an important challenge. Recently, we have developed an artificial-neural-network-based retrieval algorithm suitable for retrieving three-dimensional nanoscale crystal parameters like strain, including with noisy data (R.S. Pennington, W. Van den Broek, C.T. Koch, Phys. Rev. B 89 (20) (2014) 205409 [12]). In this work, we examine how reciprocal-space sampling conditions influence the retrieved crystal parameters, using crystal tilt as an example parameter, and demonstrate retrieval for 2.5Â nm depth resolution. For noise-free data, we find that the total reciprocal-space area is the key parameter; however, when the data are noisy, the number of reciprocal-space points and the amount of noise are also influential. We also apply our algorithm to a simulated bent specimen, and recover the bending as expected. Guidelines for experimental applications are also discussed.
Keywords
Related Topics
Physical Sciences and Engineering
Materials Science
Nanotechnology
Authors
Robert S. Pennington, Christoph T. Koch,