Article ID Journal Published Year Pages File Type
8038493 Ultramicroscopy 2013 8 Pages PDF
Abstract
Characterizing the content of geometrically necessary dislocations (GNDs) in crystalline materials is crucial to understanding plasticity. Electron backscatter diffraction (EBSD) effectively recovers local crystal orientation, which is used to estimate the lattice distortion, components of the Nye dislocation density tensor (α), and subsequently the local bulk GND density of a material. This paper presents a complementary estimate of bulk GND density using measurements of local lattice curvature and strain gradients from more recent high resolution EBSD (HR-EBSD) methods. A continuum adaptation of classical equations for the distortion around a dislocation are developed and used to simulate random GND fields to validate the various available approximations of GND content.
Related Topics
Physical Sciences and Engineering Materials Science Nanotechnology
Authors
, ,