Article ID Journal Published Year Pages File Type
8039865 Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 2016 5 Pages PDF
Abstract
Non-radiative decay of the electronic excitations (excitons) into point defects (F-H pairs of Frenkel defects) is main radiation damage mechanism in many ionic (halide) solids. Typical time scale of the relaxation of the electronic excitation into a primary, short-lived defect pair is about 1-50 ps with the quantum yield up to 0.2-0.8. However, only a small fraction of these primary defects are spatially separated and survive after transformation into stable, long-lived defects. The survival probability (or stable defect accumulation efficiency) can differ by orders of magnitude, dependent on the material type; e.g. ∼10% in alkali halides with f.c.c. or b.c.c. structure, 0.1% in rutile MgF2 and <0.001% in fluorides MeF2 (Me: Ca, Sr, Ba). The key factor determining accumulation of stable radiation defects is stabilization of primary defects, first of all, highly mobile hole H centers, through their transformation into more complex immobile defects. In this talk, we present the results of theoretical calculations of the migration energies of the F and H centers in poorely studied MgF2 crystals with a focus on the H center stabilization in the form of the interstitial F2 molecules which is supported by presented experimental data.
Related Topics
Physical Sciences and Engineering Materials Science Surfaces, Coatings and Films
Authors
, , , , , , ,