Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
8040703 | Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms | 2015 | 6 Pages |
Abstract
In tokamaks, plasma emits as a volumetric Soft-X-ray (SXR) source. Emitted X-rays can give very useful information about plasma stability, shape and impurity content. Measuring the Soft X-ray (SXR) radiation ([0.1-20Â keV]) of magnetic fusion plasmas is a standard way of accessing valuable information on particle transport and MagnetoHydroDynamic. Generally, like at Tore Supra in France, the analysis is performed with a 2D tomographic system composed of several cameras equipped with detectors like Silicon Barrier Diodes spread in periphery of the tokamak. Unfortunately, the strong constraints imposed by the environment of a tokamak reactor (high neutron fluxes, gamma and hard X-ray emission, high magnetic field and high radiofrequency powers) do not authorize to install in a close vicinity of the machine such detectors. We have thus investigated the possibility of using polycapillary lenses to transport the SXR information to several meters from the plasma, not necessarily in a straight line. The idea is to protect the SXR detector from the entire environment by a proper shielding. Different polycapillary lenses could be used for that purpose and have been tested in collaboration with CELIA (CEA-CNRS) of Bordeaux. Transmission of the order of 20% where observed for the low energetic part of the spectrum (down to 3Â keV) while still 10% were observed for the remaining part (from 3 to 10Â keV). In parallel a model of polycapillary transmission has been developed and validated against experiment. Results are presented confirming the great potential of polycapillary lenses for SXR transmission in tokamak plasma. Studies of the influence of geometrical parameters like diameter and curvature of the channels, on the photons transmission is also presented.
Keywords
Related Topics
Physical Sciences and Engineering
Materials Science
Surfaces, Coatings and Films
Authors
D. Mazon, Q. Abadie, F. Dorchies, L. Lecherbourg, A. Mollard, P. Malard, S. Dabagov,