Article ID Journal Published Year Pages File Type
80440 Solar Energy Materials and Solar Cells 2008 5 Pages PDF
Abstract

A solution to the problem of the shortage of silicon feedstock used to grow multicrystalline ingots can be the production of a feedstock obtained by the direct purification of upgraded metallurgical silicon by means of a plasma torch. It is found that the dopant concentrations in the material manufactured following this metallurgical route are in the 1017 cm−3 range. Minority carrier diffusion lengths Ln are close to 35 μm in the raw wafers and increases up to 120 μm after the wafers go through the standard processing steps needed to make solar cells: phosphorus diffusion, aluminium–silicon alloying and hydrogenation by deposition of a hydrogen-rich silicon nitride layer followed by an annealing. Ln values are limited by the presence of residual metallic impurities, mainly slow diffusers like aluminium, and also by the high doping level.

Related Topics
Physical Sciences and Engineering Chemical Engineering Catalysis
Authors
, , , ,