Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
8044724 | Vacuum | 2018 | 24 Pages |
Abstract
Silicon oxide (SiOx) nanowires were synthesized from a monosilane-argon-hydrogen mixture on substrates of different materials (monocrystalline silicon (c-Si), glass, stainless steel, copper, and copper with a SiO2 barrier layer) coated with a tin catalyst film 60Â nm thick using the gas-jet electron beam plasma chemical vapor deposition (GJ EBP CVD) method. High-density oriented arrays of microropes of SiOx nanowires were obtained on c-Si and glass substrates and a copper substrate with a SiO2 barrier layer. The fabrication of the nanowires included three steps: heating the substrate with the tin catalyst film, hydrogen plasma treatment of it, and synthesis of the structures. Heating and hydrogen plasma treatment of the tin catalyst on c-Si and glass substrates leads to a decrease in the wetting of the substrate material by tin. As a result, the morphology of the tin catalyst particles changes from semi-elliptical to truncated spherical, which leads to a significant decrease in their surface density as a result of coalescence. A condition for obtaining a high-density oriented array of microropes of SiOx nanowires by the GJ EBP CVD method using a tin catalyst is the absence of chemical reaction between tin and the substrate material.
Related Topics
Physical Sciences and Engineering
Materials Science
Surfaces, Coatings and Films
Authors
A.O. Zamchiy, E.A. Baranov, S. Ya Khmel,