Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
804700 | Precision Engineering | 2009 | 5 Pages |
Demand for lightweight aluminum-based composites is rapidly increasing in the transport industry. Generally it is considered that aluminum alloys are easy-to-cut materials due to their low hardness. However, it is noted that some serious problems exist. Because of low lubricity against the cutting tool surface during deep-hole drilling, milling, and tapping, aluminum chips may adhere strongly to the cutting edge of the tool, leading to tool breakage. To solve this problem, a cutting tool with a nano/micro-textured surface utilizing femto-second laser technology was proposed in our previous research. A series of face-milling experiments for aluminum alloy showed that a nano/micro-textured surface promoted anti-adhesive effects at the tool–chip interface, although adhesion remained a problem. In this study, the ways to improve the anti-adhesive effect with nano/micro-textures were studied. Based on this, a cutting tool with a banded nano/micro-textured surface was newly developed and it was revealed that the surface significantly improved the anti-adhesiveness and lubricity.