Article ID Journal Published Year Pages File Type
804912 Mechanism and Machine Theory 2010 23 Pages PDF
Abstract

This paper aims at accurate modeling and sensitivity analysis for a pneumatic vibration isolation system (PVIS) as a foundation for practical design. Even though the PVIS is widely used for its effective performance in vibration isolation, its design has depended largely on trial-and-error methods. In previous studies, nonlinear characteristics of the diaphragm and the air flow restrictor, which significantly affect the performance of a PVIS, have been investigated. However, several hurdles, such as the absence of a mathematical model for the diaphragm, still remain with regard to the model-based prediction of performance. Therefore, a fractional derivative model for the diaphragm and a quadratic damping model for the air flow restrictor are newly developed based on the careful examination of previous studies. Then, sensitivities of vibration isolation performance indices with regard to major design variables are analyzed and new approximation formulas are created based on the dynamic characteristics of the PVIS. Our models with a transmissibility-computing algorithm are verified by comparison with experimental data. The sensitivity analyses and approximation formulas are expected to be useful for practical PVIS design owing to their simplicity and accuracy.

Related Topics
Physical Sciences and Engineering Engineering Industrial and Manufacturing Engineering
Authors
, ,