Article ID Journal Published Year Pages File Type
8049717 Procedia CIRP 2018 6 Pages PDF
Abstract
This paper discusses the methodological framework of the study and presents the environmental assessment results for selected materials. It highlights the main challenges in the assessment of innovative storage materials on different system levels which require specific definition of functional units accordingly. The first assessment results on material level for selected phase change (PCM) and thermo-chemical materials (TCM) allow an environmental characterization regarding their potential application in thermal storages. In addition, ranges of required numbers of storage cycles for amortization have been calculated for the non-renewable primary energy demand. For PCMs amortization cycles range between ∼20 to 150 cycles for salt hydrates and up to ∼280 cycles for paraffins. Regarding TCM, energetic amortization of silica gel and zeolite 13x is reached after ∼60 and ∼260 cycles respectively. Since the realization of storage components and systems which can actually be used in real applications will further increase the cycle number required for amortization, these storage materials may thus not be suitable for applications with a low number of cycles over lifetime, such as seasonal storage.
Related Topics
Physical Sciences and Engineering Engineering Industrial and Manufacturing Engineering
Authors
, , , , , , , , ,