Article ID Journal Published Year Pages File Type
8051056 Applied Mathematical Modelling 2018 31 Pages PDF
Abstract
This article presents optimal Bayesian accelerated life test plans for series systems under Type-I censoring scheme. First, the component lifetimes are assumed to follow independent Weibull distributions. The scale parameters of Weibull lifetime distributions are related to the external stress variable through a general stress translation function. For a fixed number of design points, optimal Bayesian ALT plans are first obtained by solving constrained optimization problems under two different Bayesian design criteria. The global optimality of the resulting fixed-point optimal designs is then verified via the General Equivalence Theorem. This article also provides the optimized compromise ALT plans which are extremely useful in real-life applications. A detailed sensitivity analysis is then performed to find out the effect of various planning inputs on the resulting optimal Bayesian ALT plans. A simulation study is then conducted to visualize the resulting sampling variations from the optimal Bayesian ALT plans. Finally, this article considers a series system with dependent component lifetimes. Optimal ALT plans are obtained assuming a Gamma frailty model.
Related Topics
Physical Sciences and Engineering Engineering Computational Mechanics
Authors
,