Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
8051822 | Applied Mathematical Modelling | 2018 | 26 Pages |
Abstract
Based on multiquadric trigonometric quasi-interpolation, the paper proposes a meshless symplectic scheme for Hamiltonian wave equation with periodic boundary conditions. The scheme first discretizes the equation in space using an iterated derivative approximation method based on multiquadric trigonometric quasi-interpolation and then in time with an appropriate symplectic scheme. This in turn yields a finite-dimensional semi-discrete Hamiltonian system whose energy and momentum (approximations of the continuous ones) are invariant with respect to time. The key feature of the scheme is that it conserves both the energy and momentum of the Hamiltonian system for both uniform and scattered centers, while classical energy-momentum conserving schemes are only for uniform centers. Numerical examples provided at the end of the paper show that the scheme is efficient and easy to implement.
Related Topics
Physical Sciences and Engineering
Engineering
Computational Mechanics
Authors
Zhengjie Sun, Wenwu Gao,