Article ID Journal Published Year Pages File Type
8052653 Applied Mathematical Modelling 2015 24 Pages PDF
Abstract
This paper investigates local time stepping (LTS) with the RKDG2 (second-order Runge-Kutta Discontinuous Galerkin) non-uniform solutions of the inhomogeneous SWEs (shallow water equations) with source terms. A LTS algorithm - recently designed for homogenous hyperbolic PDE(s) - is herein reconsidered and improved in combination with the RKDG2 shallow-flow solver (LTS-RKDG2) including topography and friction source terms as well as wetting and drying. Two LTS-RKDG2 schemes that adapt 3 and 4 levels of LTSs are configured on 1D and/or 2D (quadrilateral) non-uniform meshes that, respectively, adopt 3 and 4 scales of spatial discretization. Selected shallow water benchmark tests are used to verify, assess and compare the LTS-RKDG2 schemes relative to their conventional Global Time Step RKDG2 alternatives (GTS-RKDG2) considering several issues of practical relevance to hydraulic modelling. Results show that the LTS-RKDG2 models could offer (depending on both the mesh setting and the features of the flow) comparable accuracy to the associated GTS-RKDG2 models with a savings in runtime of up to a factor of 2.5 in 1D simulations and 1.6 in 2D simulations.
Related Topics
Physical Sciences and Engineering Engineering Computational Mechanics
Authors
, ,