Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
8053038 | Applied Mathematical Modelling | 2013 | 10 Pages |
Abstract
A mathematical model has been developed to improve our understanding of how the transport and bioavailability of chromium are affected by complex sets of microbiological and geochemical reactions. Simulations are performed to illustrate the effect of biotic and abiotic reactions on the fate and distribution of chromium in a saturated sediment and to identify the key process of the reductive transformation of Cr(VI). The results showed that chromium transport and bioavailability could be greatly affected by microbially mediated Cr(VI) reduction. The distribution of chromium in sediments was relatively insensitive to abiotic reaction parameter changes but was sensitive to biotic reaction changes. Because of the finite capacity of biological Cr(VI) reduction, transformation of Cr(VI) into Cr(III) can be most effective in the remediation of chromium contamination under the optimal Cr(VI) concentration and remediation duration.
Related Topics
Physical Sciences and Engineering
Engineering
Computational Mechanics
Authors
Sookyun Wang, Jung Hyun Choi,