Article ID Journal Published Year Pages File Type
8053143 Applied Mathematical Modelling 2013 14 Pages PDF
Abstract
We derive closed-form solutions to the mixed boundary value problem of a partially debonded rigid line inclusion penetrating a circular elastic inhomogeneity under antiplane shear deformation. The two tips of the rigid line inclusion are just mutual mirror images with respect to the inhomogeneity/matrix interface, and the upper part of the rigid line inclusion is debonded from the surrounding materials. By using conformal mapping and the method of image, closed-form solutions are derived for three loading cases: (i) the matrix is subjected to remote uniform stresses; (ii) the matrix is subjected to a line force and a screw dislocation; and (iii) the inhomogeneity is subjected to a line force and a screw dislocation. In the mapped ξ-plane, the solutions for all the three loading cases are interpreted in terms of image singularities. For the remote loading case, explicit full-field expressions of all the field variables such as displacement, stress function and stresses are obtained. Also derived is the near tip asymptotic elastic field governed by two generalized stress intensity factors. The generalized stress intensity factors for all the three loading cases are derived.
Related Topics
Physical Sciences and Engineering Engineering Computational Mechanics
Authors
,