Article ID Journal Published Year Pages File Type
8053703 Applied Mathematics Letters 2018 7 Pages PDF
Abstract
Based on the nonlocal nonlinear Schrödinger equation that governs phenomenologically the propagation of laser beams in nonlocal nonlinear media, we theoretically investigate the propagation of sinh-Gaussian beams (ShGBs). Mathematical expressions are derived to describe the beam propagation, the intensity distribution, the beam width, and the beam curvature radius of ShGBs. It is found that the propagation behavior of ShGBs is variable and closely related to the parameter of sinh function (PShF). If the PShF is small, the transverse pattern of ShGBs keeps invariant during propagation for a proper input power, which can be regarded as solitons. If the PShF is large, it varies periodically, which is similar to the evolution of temporal higher-order solitons in nonlinear optical fiber. Numerical simulations are carried out to illustrate the typical propagation characteristics.
Related Topics
Physical Sciences and Engineering Engineering Computational Mechanics
Authors
, , , ,