Article ID Journal Published Year Pages File Type
80543 Solar Energy Materials and Solar Cells 2006 7 Pages PDF
Abstract

Highly conductive and transparent aluminum-doped zinc oxide (ZnO:Al) films were prepared by reactive mid-frequency (MF) magnetron sputtering at high growth rates. By varying the deposition pressure, pronounced differences with respect to film structure and wet chemical etching behavior were obtained. Optimized films develop good light-scattering properties upon etching leading to high efficiencies when applied to amorphous (a-Si:H) and microcrystalline (μc-Si:H) silicon-based thin-film solar cells and modules. Initial efficiencies of 7.5% for a μc-Si:H single junction and 9.7% for an a-Si:H/μc-Si:H tandem module were achieved on an aperture area of 64 cm2.

Related Topics
Physical Sciences and Engineering Chemical Engineering Catalysis
Authors
, , , , , , , ,