Article ID Journal Published Year Pages File Type
8054812 Biosystems Engineering 2018 15 Pages PDF
Abstract
Yellow rust and fusarium head blight cause significant losses in wheat and barley yields. Mapping the spatial distribution of these two fungal diseases at high sampling resolution is essential for variable rate fungicide application (in case of yellow rust) and selective harvest (in case of fusarium head blight). This study implemented a hyperspectral line imager (spectrograph) for on-line measurement of these diseases in wheat and barley in four fields in Bedfordshire, the UK. The % coverage was assessed based on two methods, namely, infield visual assessment (IVA) and photo interpretation assessment (PIA) based on 100-point grid overlaid RGB images. The spectral data and disease assessments were subjected to partial least squares regression (PLSR) analyses with leave-one-out cross-validation. Results showed that both diseases can be measured with similar accuracy, and that the performance is better in wheat, as compared to barley. For fusarium, it was found that PIA analysis was more accurate than IVA. The prediction accuracy obtained with PIA was classified as good to moderately accurate, since residual prediction deviation (RPD) values were 2.27 for wheat and 1.56 for barley, and R2 values were 0.82 and 0.61, respectively. Similar results were obtained for yellow rust but with IVA, where model performance was classified as moderately accurate in barley (RPD = 1.67, R2 = 0.72) and good in wheat (RPD = 2.19, R2 = 0.78). It is recommended to adopt the proposed approach to map yellow rust and fusarium head blight in wheat and barley.
Related Topics
Physical Sciences and Engineering Engineering Control and Systems Engineering
Authors
, , ,