Article ID Journal Published Year Pages File Type
8055202 Biosystems Engineering 2014 11 Pages PDF
Abstract
Securing global food supply and coping with climate change requires new plant breeding approaches for the selection of favourable genotypes. This can be accomplished by introducing new non-destructive measuring techniques which allow quantifying growth processes of the same plants over a longer period of time (“phenotyping”). The use of a high-precision laser scanner coupled with a moveable articulated measuring arm to directly obtain 3D data non-invasively at sub-millimetre scale is investigated. This enabled reconstruction of the single barley organs leaf and stem as well as the architecture of the whole barley plant on the decimetre scale. The added data analysing process enabled multiple morphological plant parameters to be simultaneously derived from one scanning process which were highly correlated (R2 0.85-0.97) to manually obtained parameters from reference measurements. By scanning every 2-3 days organ-specific growth monitoring of single leaves (area) and single stems (height) was established for the first time for cereals. The cumulated parameters of leaf area, stem height and plant volume allowed the growth dynamics of the barley to be quantified until tillering was ended. As an example, drought effect due to reduced irrigation was shown with smallest significant differences and dated precisely. The fineness of the laser scanning measurement system indicated its appropriateness for high-precision phenotyping in plant breeding as well as for detailed morphological measuring questions in the fields of biology and agronomy.
Related Topics
Physical Sciences and Engineering Engineering Control and Systems Engineering
Authors
, , , ,