Article ID Journal Published Year Pages File Type
8055660 Acta Astronautica 2018 28 Pages PDF
Abstract
The paper is concerned with examining the effects that design-for-demise solutions can have not only on the demisability of components, but also on their survivability that is their capability to withstand impacts from space debris. First two models are introduced. A demisability model to predict the behaviour of spacecraft components during the atmospheric re-entry and a survivability model to assess the vulnerability of spacecraft structures against space debris impacts. Two indices that evaluate the level of demisability and survivability are also proposed. The two models are then used to study the sensitivity of the demisability and of the survivability indices as a function of typical design-for-demise options. The demisability and the survivability can in fact be influenced by the same design parameters in a competing fashion that is while the demisability is improved, the survivability is worsened and vice versa. The analysis shows how the design-for-demise solutions influence the demisability and the survivability independently. In addition, the effect that a solution has simultaneously on the two criteria is assessed. Results shows which, among the design-for-demise parameters mostly influence the demisability and the survivability. For such design parameters maps are presented, describing their influence on the demisability and survivability indices. These maps represent a useful tool to quickly assess the level of demisability and survivability that can be expected from a component, when specific design parameters are changed.
Related Topics
Physical Sciences and Engineering Engineering Aerospace Engineering
Authors
, , ,