Article ID Journal Published Year Pages File Type
805616 Reliability Engineering & System Safety 2014 6 Pages PDF
Abstract

•We describe the models employed for the analysis of an inadvertent drilling intrusion into the repository.•Expected dose and expected (mean) dose results for inadvertent drilling intrusions are presented.•We demonstrate numerical stability of the sampling-based uncertainty and sensitivity analysis procedures.

Extensive work has been carried out by the U.S. Department of Energy (DOE) in the development of a proposed geologic repository at Yucca Mountain (YM), Nevada, for the disposal of high-level radioactive waste. In support of this development and an associated license application to the U.S. Nuclear Regulatory Commission (NRC), the DOE completed an extensive performance assessment (PA) for the proposed YM repository in 2008. This presentation describes the determination of expected (mean) dose to the reasonably maximally exposed individual (RMEI) specified in the NRC regulations for the YM repository resulting from an inadvertent drilling intrusion into the repository. The following topics are addressed: (i) assumed properties of an inadvertent drilling intrusion and the determination of the associated dose and expected (mean) dose to the RMEI, (ii) uncertainty and sensitivity analysis results for expected dose to the RMEI, and (iii) the numerical stability of the sampling-based procedure used to estimate expected (mean) dose to the RMEI. The present article is part of a special issue of Reliability Engineering and System Safety devoted to the 2008 YM PA; additional articles in the issue describe other aspects of the 2008 YM PA.

Related Topics
Physical Sciences and Engineering Engineering Mechanical Engineering
Authors
, , , , , , , , , , , , ,