Article ID Journal Published Year Pages File Type
8056337 Acta Astronautica 2016 17 Pages PDF
Abstract
In this paper, we analysed and compared the manipulation capability of SSRMS-type manipulators with joints locked at arbitrary positions, and proposed efficient path planning via a fault-tolerant control method. First, a unified kinematic model of this type of manipulators was established. Second, the manipulation capability of the original 7-DOF (degrees of freedom) redundant manipulator was analysed and compared with its degraded 6-DOF counterparts formed by different joint locking configurations. Then, we identified those joints with large sensitivity to fault tolerance performance. The influences of different positions of all joints were also determined by numerical computation. Based on the analysis, the relatively safe and dangerous regions for each joint failure were identified. Finally, we proposed a path planning strategy and realized by a H∞ controller which enables the failure joint locked in the safe region, and simulations were carried on a degraded 3-DOF planar redundant manipulator to verify the planning strategy and control approach. This paper provided important analysis results and efficient methods to address the possible problems of SSRMS-type manipulators caused by single-joint failure that can be extended to other types of manipulators. Moreover, the proposed method is useful for designing the optimal configuration of a redundant manipulator.
Related Topics
Physical Sciences and Engineering Engineering Aerospace Engineering
Authors
, , , , ,