Article ID Journal Published Year Pages File Type
8056613 Acta Astronautica 2015 13 Pages PDF
Abstract
This paper presents the conceptual design and analysis of a system intended to increase the range, scientific capability, and safety of manned lunar surface exploration, requiring only a modest increase in capability over the Apollo mission designs. The system is intended to enable two astronauts, exploring with an unpressurized rover, to remove their space suits for an 8-h rest away from the lunar base and then conduct a second day of surface exploration before returning to base. This system is composed of an Environmental Control and Life Support System on the rover, an inflatable habitat, a solar shield and a solar power array. The proposed system doubles the distance reachable from the lunar base, thus increasing the area available for science and exploration by a factor of four. In addition to increasing mission capability, the proposed system also increases fault tolerance with an emergency inflatable structure and additional consumables to mitigate a wide range of suit or rover failures. The mass, volume, and power analyses of each subsystem are integrated to generate a total system mass of 124 kg and a volume of 594 L, both of which can be accommodated on the Apollo Lunar Roving Vehicle with minor improvements.
Related Topics
Physical Sciences and Engineering Engineering Aerospace Engineering
Authors
, , , , , , , , , , , , ,