Article ID Journal Published Year Pages File Type
8058804 Aerospace Science and Technology 2015 12 Pages PDF
Abstract
This paper examines the design of adaptive laminar airfoils in the transonic flow regime using the γ-Re˜θt model as a transition prediction method. A robust solution procedure for the transition model is described and a grid convergence study is presented. Predictions from the model are then compared to an extensive set of experimental results containing transition measurements on a morphing airfoil. It is shown that the sensitivity of the γ-Re˜θt transition model with respect to shape variations allows its use in a design framework. Using a multi-point optimization strategy, the model is then used to design transonic airfoils suitable for a range of flow conditions. The potential improvement in drag associated with the implementation of adaptive airfoil technology is then carefully quantified using single-point optimization with the multi-point designed airfoil as a reference. Structural design constraints are taken into account to obtain a realistic estimate of possible drag reduction through airfoil morphing using current wing construction technology. Airfoil drag improvements of up to 4.6% are obtained through morphing of the section of upper surface located between the wing spars with respect to the baseline multi-point design in flow conditions typical of large business jet operation.
Related Topics
Physical Sciences and Engineering Engineering Aerospace Engineering
Authors
, , ,