Article ID Journal Published Year Pages File Type
8059379 Applied Ocean Research 2016 13 Pages PDF
Abstract
Large-eddy simulation of turbulent flow past a circular cylinder at sub- to super-critical Reynolds numbers is performed using a high-fidelity orthogonal curvilinear grid solver. Verification studies investigate the effects of grid resolution, aspect ratio and convection scheme. Monotonic convergence is achieved in grid convergence studies. Validation studies use all available experimental benchmark data. Although the grids are relatively large and fine enough for sufficiently resolved turbulence near the cylinder, the grid uncertainties are large indicating the need for even finer grids. Large aspect ratio is required for sub-critical Reynolds number cases, whereas small aspect ratio is sufficient for critical and super-critical Reynolds number cases. All the experimental trends were predicted with reasonable accuracy, in consideration the large facility bias, age of most of the data, and differences between experimental and computational setup in particular free stream turbulence and roughness. The largest errors were for under prediction of turbulence separation.
Related Topics
Physical Sciences and Engineering Engineering Ocean Engineering
Authors
, , ,