Article ID Journal Published Year Pages File Type
806181 Probabilistic Engineering Mechanics 2011 9 Pages PDF
Abstract

Idealized modeling of most engineering structures yields linear mathematical models, i.e., linear ordinary or partial differential equations. However, features like nonlinear dampers and/or springs can render nonlinear an otherwise linear model. Often, the connectivity of these nonlinear elements is confined to only a few degrees-of-freedom (DOFs) of the structure. In such cases, treating the entire structure as nonlinear results in very computationally expensive solutions. Moreover, if system parameters are uncertain, their stochastic nature can render the analysis even more computationally costly. This paper presents an approach for computing the response of such systems in a very efficient manner. The proposed solution procedure first segregates the DOFs appearing in the nonlinear and/or stochastic terms from those DOFs that involve only linear deterministic operations. Second, the responses of nonlinear/stochastic terms are determined using a non-standard form of a nonlinear Volterra integral equation (NVIE). Finally, the responses of the remaining DOFs are computed through a convolution approach using the fast Fourier transform to further increase the computational efficiency. Three examples are presented to demonstrate the efficacy and accuracy of the proposed method. It is shown that, even for moderately sized systems (∼1000 DOFs), the proposed method is about three orders of magnitude faster than a conventional Monte Carlo sampling method (i.e., solving the system of ODEs repeatedly).

► Rapid simulation method for systems with local nonlinearities and/or uncertainties. ► Exact model reduction to a low-order nonlinear Volterra integral equation (NVIE). ► Computational speed-up of over 1000 times for simulation of a medium-sized FEM model.

Related Topics
Physical Sciences and Engineering Engineering Mechanical Engineering
Authors
, , ,