Article ID Journal Published Year Pages File Type
8066163 Ocean Engineering 2014 10 Pages PDF
Abstract
Fully nonlinear bi-chromatic unidirectional waves propagating in deep-water are investigated using the homotopy analysis method. The velocity potential of the waves is expressed by Fourier series and the nonlinear free surface boundary conditions are satisfied by continuous mapping. The bi-chromatic wave elevation and velocity profiles underneath the wave crest and trough are presented and compared with the available perturbation results. Unlike the perturbation method, the present approach is not dependent on small parameters; therefore solutions are possible for steep waves. The Fast Fourier Transform analysis is then applied to study the effect of higher order wave components. The fully nonlinear dispersion relation is established. Comparisons of the wave characteristics demonstrate that the present method is effective to study the strongly nonlinear wave-wave interactions.
Related Topics
Physical Sciences and Engineering Engineering Ocean Engineering
Authors
, , , ,