Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
8068044 | Annals of Nuclear Energy | 2016 | 7 Pages |
Abstract
Radioactive iodine, which is released into the atmosphere of the containment building, is absorbed into the containment spray water and dissolved to be ionized. This iodine-rich water is then transported to the in-containment refueling water storage tank (IRWST) in APR1400 nuclear power plants. When the pH of the water is below 7, the dissolved iodine converts to molecular iodine and re-evolves from the water and returns to the atmosphere. A series of studies have been conducted in order to evaluate the iodine re-evolution from the IRWST. This study consists of two parts: the pH evaluation method and the evaluation of the iodine re-evolution. This paper presents the first part, i.e. the pH evaluation method. The equilibrium concentrations of various chemicals in a solution are determined at the minimum Gibbs' free energy. This method is useful for complex reactant problems rather than equilibrium constants method because the latter method requires numerous equilibrium constants and there might be missing equilibrium constants associated with the solution. The calculated pH values of solutions are compared with the experimental measurements in order to validate this method and the thermodynamic data of the chemicals incorporated into the program. The estimated values for solutions are in good agreement with the experimental measurements within a difference of less than 3.3%.
Keywords
Related Topics
Physical Sciences and Engineering
Energy
Energy Engineering and Power Technology
Authors
Tae Hyeon Kim, Ji Hwan Jeong,