Article ID Journal Published Year Pages File Type
8068358 Annals of Nuclear Energy 2015 7 Pages PDF
Abstract
A pebble bed high-temperature gas-cooled reactor (PBR) with rock-like oxide (ROX) fuel was designed to achieve high discharged burnup and improve the integrity of the spent fuel in geological disposal. The MCPBR code with a JENDL-4.0 library, which developed the analysis of the Once-Through-Then-Out (OTTO) cycle in PBR, was used to perform the criticality and burnup analysis. Burnup calculations for eight cases were carried out for both ROX fuel and a UO2 fuel reactor with different heavy-metal loading conditions. The effective multiplication factor of all cases approximately equalled unity in the equilibrium condition. The ROX fuel reactor showed lower FIFA than the UO2 fuel reactor at the same heavy-metal loading, about 5-15%. However, the power peaking factor and maximum power per fuel ball in the ROX fuel core were lower than that of UO2 fuel core. This effect makes it possible to compensate for the lower-FIFA disadvantage in a ROX fuel core. All reactor designs had a negative temperature coefficient that is needed for the passive safety features of a pebble bed reactor.
Related Topics
Physical Sciences and Engineering Energy Energy Engineering and Power Technology
Authors
, ,