Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
8068607 | Annals of Nuclear Energy | 2015 | 5 Pages |
Abstract
In order to conservatively apply burnup credit in spent fuel pool criticality analyses, code validation for both fresh and used fuel is required. Fresh fuel validation is typically done by modeling experiments from the “International Handbook.” A depletion validation can determine a bias and bias uncertainty for the worth of the isotopes not found in the fresh fuel critical experiments. Westinghouse's burnup credit methodology uses PARAGON⢠(Westinghouse 2-D lattice physics code) and its 70-group cross-section library, which have been benchmarked, qualified, and licensed both as a standalone transport code and as a nuclear data source for core design simulations. A bias and bias uncertainty for the worth of depletion isotopes, however, are not available for PARAGON. Instead, the 5% decrement approach for depletion uncertainty is used, as set forth in the Kopp memo. Recently, EPRI developed a set of benchmarks based on a large set of power distribution measurements to ascertain reactivity biases. The depletion reactivity has been used to create 11 benchmark cases for 10, 20, 30, 40, 50, and 60 GWd/MTU and 3 cooling times 100 h, 5 years, and 15 years. These benchmark cases are analyzed with PARAGON and the SCALE package and sensitivity studies are performed using different cross-section libraries based on ENDF/B-VI.3 and ENDF/B-VII data to assess that the 5% decrement approach is conservative for determining depletion uncertainty.
Keywords
Related Topics
Physical Sciences and Engineering
Energy
Energy Engineering and Power Technology
Authors
Vefa N. Kucukboyaci,