Article ID Journal Published Year Pages File Type
8068670 Annals of Nuclear Energy 2015 14 Pages PDF
Abstract
The initial implementation of this modular mapping methodology incorporates the neutronic depletion solver MCNP/MONTEBURNS and a multi-channel analysis two-phase flow thermal hydraulic solver. Two verification test problems were evaluated to verify that the code's routines were operating as intended. Preexisting generic BWR and nontraditional PWR cases were selected to ensure maximum code coverage and evaluate the operation of all implemented mapping routines. The obtained power, coolant temperature, and coolant density results verified that SMITHERS was correctly performing on-the-fly mapping combinatorial-basis MCNP/MONTEBURNS-calculated material powers to the thermal-hydraulic solver's nodal geometry and that nodal coolant temperature and densities were correctly returned to the combinatorial geometry of MCNP.
Keywords
Related Topics
Physical Sciences and Engineering Energy Energy Engineering and Power Technology
Authors
, , , ,