Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
8068921 | Annals of Nuclear Energy | 2015 | 6 Pages |
Abstract
In this research, the simulation of one-sixth of VVER-1000 (Bushehr) reactor core is carried out by WIMS-D4 nuclear code, based on symmetry of core and also by information obtained from FSAR. The cross sections of some nuclides are obtained by WIMS-D4 from the beginning of cycle (BOC) to the end of cycle (EOC), and they are transferred into the CITATION code as inputs. In the next stage, the amounts of neutron fluxes and power of reactor core are obtained by CITATION code in the CZP and HFP states. Then, the received products are returned again into the extended program cycle, thereby distributions of neutron fluxes and power are finally depicted. In the meantime, the space distribution of neutron fluxes and power throughout the core are presented during the normal operation by this simulation. It can be inferred that if the reactor operation continues, a flat power distribution will be made in the reactor core that might cause maximum power.
Keywords
Related Topics
Physical Sciences and Engineering
Energy
Energy Engineering and Power Technology
Authors
Mohsen Rafiei Karahroudi, Seyed Alireza Mousavi Shirazi,