Article ID Journal Published Year Pages File Type
8069206 Annals of Nuclear Energy 2015 11 Pages PDF
Abstract
In the experiments, sequential flows of air, steam-air mixture and pure steam-each with the various flow rate conditions are injected from the Drywell (DW) through a downcomer pipe in the SP. Eight tests with two different downcomer sizes, various initial gas volumetric fluxes at the downcomer, and two different initial non-condensable gas concentration conditions in the DW are conducted. Three distinct phases, namely, an initial phase, a quasi-steady, and a chugging phase are observed. The maximum void penetration depth is observed in the initial phase. A reduction in the void penetration depth is observed in the quasi-steady phase. As a result of low non-condensable gas concentration, chugging is observed at the tail end of the experiment. Chugging provides renewed void penetrations comparable to those in the initial phase. It is determined that the void distribution and area of void penetration in the SP is governed by the gas volumetric flux at the downcomer and the non-condensable gas concentration in the downcomer.
Related Topics
Physical Sciences and Engineering Energy Energy Engineering and Power Technology
Authors
, , , , , , ,