Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
8071075 | Energy | 2018 | 11 Pages |
Abstract
Thermal runaway of three lithium ion cells (“A” - NCA/Graphite, “B” - LFP/Graphite, “C” - NCA/LTO) at 0%, 50%, and 100% state of charge (SOC) is studied by Accelerating Rate Calorimetry (ARC). Thermal behaviour of harvested positive and negative electrodes at three SOC (0%, 50%, and 100%) is analyzed using Differential Scanning Calorimetry (DSC). Thermal stability of recovered separators is also investigated by DSC. Harvested electrodes and separators are studied alone and in contact with a liquid electrolyte. The thermal behaviour of each component and its contribution is quantified and thoroughly discussed. A crucial negative impact of the state of charge and presence of highly flammable liquid electrolyte on the thermal instability of the investigated cells and “electrode - electrolyte” systems is clearly revealed. Among studied cells, LiFePO4/Graphite one is the safest due to intrinsic thermal stability of lithium iron phosphate LiFePO4 based cathode and despite the fact of using a microporous polyolefin separator with limited thermal stability.
Related Topics
Physical Sciences and Engineering
Energy
Energy (General)
Authors
Andriy Kvasha, César Gutiérrez, Urtzi Osa, Iratxe de Meatza, J. Alberto Blazquez, Haritz Macicior, Idoia Urdampilleta,