Article ID Journal Published Year Pages File Type
8071095 Energy 2018 7 Pages PDF
Abstract
A novel power generation system with integrated supercritical water gasification (SCWG) of coal is proposed in this article. The gasification product directly enters the supercritical turbine to generate electricity. After pressure relief, the syngas separated from the unreacted water is transferred to the combined cycle. The influences of coal-water-slurry concentration (CWSC) and the outlet pressure (Ph) of the supercritical turbine on the system performances are studied. The results show that the thermal efficiency increases with increasing CWSC or decreasing Ph. The ultimate thermal efficiency of the system can be obtained when the CWSC is 25 wt% and Ph is 1 bar, which can approach 54.68%. The thermal efficiency of the novel system is higher than that of the power generation system with integrated SCWG of coal and parallel chemical heat recovery.
Related Topics
Physical Sciences and Engineering Energy Energy (General)
Authors
, , , , ,