Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
8071526 | Energy | 2018 | 22 Pages |
Abstract
Flapping wings, inspired by the mechanism of birds and fish, can act as generators to harvest energy from tidal currents. The hydraulic system is simplified as a spring-damper system to establish the coupling equations relating to the wing motion and the hydrodynamic forces. To provide guidance for design of a fully flow-induced flapping wings energy harvesting system, the behaviors of both system response and energy extraction performance are analyzed using two-dimensional numerical approach. Depending on the rotary actuator radius R, and the volume ratio β between the cylinder and rotary actuator, three distinguishable behaviors are observed in the system response and energy extraction performance. At larger R and smaller β, the dual wings tend to undergo a damped reduction flapping motion because the pitching motion consumes a significant amount of energy. Both decreasing R and increasing β can reduce the energy consumption of the pitching motion, and thus allow the dual wings to achieve a sustainable flapping motion. Although an irregular response can achieve a self-sustained flapping motion, it is unfavorable owing to its unstable power output. The regular response essential for stable energy harvesting is realized over a range of coupling parameters. The energy extraction performance of the system is closely associated with β but also slightly depends on R.
Keywords
Related Topics
Physical Sciences and Engineering
Energy
Energy (General)
Authors
Penglei Ma, Yong Wang, Yudong Xie, Zhipu Huo,