Article ID Journal Published Year Pages File Type
8071663 Energy 2018 49 Pages PDF
Abstract
This paper presents a 2D multiphase non-isothermal mass transfer model for a single-cell direct methanol fuel cell (DMFC). The model includes the reaction of methanol and oxygen at the anode and cathode, respectively. In addition, it also considers the diffusion of every component involved in DMFC-i.e., methanol, water and oxygen at the diffusion layer and the methanol crossover phenomena. It also includes the relation between the temperature and concentration towards the power output. Later, the model was optimised and the result shows this model can generate up to 48 mWcm−2 of power density reflected to 190 mAcm−2 and 0.26 V of current density and voltage, respectively. It shows this study generate a good model compare to previous study, at a methanol concentration of 4 M and operating temperature of 60 °C.
Related Topics
Physical Sciences and Engineering Energy Energy (General)
Authors
, , , , ,