Article ID Journal Published Year Pages File Type
8071689 Energy 2018 26 Pages PDF
Abstract
Large scale wind turbine tower blade coupling belongs to nonlinear coupled vibration system, force changes will affect the stability of the system by the displacement and stress caused by the vibration, by joint simulation technology of multi parameter monitoring of large scale wind turbine tower blade coupling structure, with the response under different working conditions of the analysis, identified the need for improved structural parts the situation changes, the key components of multi parameter monitoring tower blade coupling structure with time, study on the influence of various parameters on the structure, put forward the improvement measures, and the structure of parts before and after improvement were analyzed comparing the dynamic stability of wind turbine, so as to provide reference for flexible multi-body system. Aiming at the dynamic response of large wind turbine flexible tower segments, a two-way fluid solid coupling method is used to analyze the fluid and structure dynamics of the flange at the segmental flange of the tower. Combined with the flow chart, the typical modal diagram of the flange is obtained. Considering the analysis of hydrodynamic coupling structure in the blade tower, in the combined effect of wind shear and fluctuating wind, the tower flange speed, pressure, shear stress and vorticity distribution, while considering the comparison of stress and displacement should be coupled with not considering the coupling effect of tower flange. The shear stress of the tower flange shows a nonlinear trend. The wind speed of the bolt uniformly distributed is stable. Considering the coupling effect, the flange amplitude of the tower flange is smaller than that without considering the coupling effect. The results can be used as a reference for monitoring the dynamic parameters of the flange structure under the coupling effect of the tower frame blade of a large wind turbine.
Related Topics
Physical Sciences and Engineering Energy Energy (General)
Authors
, , , , ,