Article ID Journal Published Year Pages File Type
807232 Theoretical and Applied Fracture Mechanics 2010 4 Pages PDF
Abstract
A R-integral is defined to account for the evolution of the root functions from Ideomechanics. They can be identified with, though not limited to, the fatigue crack length or velocity. The choice was dictated by the available validated data for relating accelerated testing to real time life expectancy. The key issue is to show that there exists a time range of high reliability for the crack length and velocity that correspond to the least variance of the time dependent R-integrals. Excluded from the high reliability time range are the initial time span where the lower scale defects are predominant and the time when the macrocrack approaches instability at relatively high velocity. What remains is the time span for micro-macro cracking. The linear sum (ls) and root mean square (rms) average are used to delineate two different types of variance. The former yields a higher reliability in comparison with that for the latter. The results support the scale range established empirically by in-service health monitoring for the crack length and velocity. The principle of least variance can be extended to multiscale reliability analysis and assessment for multi-component and multi-function systems.
Related Topics
Physical Sciences and Engineering Engineering Mechanical Engineering
Authors
,