Article ID Journal Published Year Pages File Type
8072391 Energy 2018 43 Pages PDF
Abstract
Chemical looping combustion (CLC) is regarded as the most promising technology for CO2 capture to mitigate greenhouse gas effect. In this work, a technical and economic performance of CH4-feed CLC power plant by means of utilizing promising nickel-, copper-, and ilmenite-based oxygen carriers is studied. Nickel-based CLC power plant has the highest net power efficiency of 50.14%, followed by 48.02% for ilmenite-based case and 45.59% for copper-based case. By contrast nickel-based case has a specific CO2 emission of 1.44 kg/MW h, which is dramatically lower than the referenced NGCC with CCS system (40.10 kg/MW h). The economic analyse reveal nickel-based case is most economic-benefits due to the lowest cost of electricity (COE) of 71.66€/MW h, approximately 0.32 €/MW h and 13.06 €/MW h COE reduction benefits have been increased in comparison with ilmenite-based and copper-based case, respectively. The natural gas price has an important influence on COE, as approximately 49.73%, 48.60% and 56.30% of COE enhancement is expected with the natural gas price ranging in 4-8 €/GJ for nickel-based, copper-based, and ilmenite-based case, respectively. Finally a comparison between NGCC and CLC-related power system in terms of economic performance further demonstrates the feasibility of the latter system.
Related Topics
Physical Sciences and Engineering Energy Energy (General)
Authors
, , , ,