Article ID Journal Published Year Pages File Type
807325 Probabilistic Engineering Mechanics 2007 14 Pages PDF
Abstract

Approximations are developed for the marginal and joint probability distributions for the extreme values, associated with a vector of non-Gaussian random processes. The component non-Gaussian processes are obtained as nonlinear transformations of a vector of stationary, mutually correlated, Gaussian random processes and are thus, mutually dependent. The multivariate counting process, associated with the number of level crossings by the component non-Gaussian processes, is modelled as a multivariate Poisson point process. An analytical formulation is developed for determining the parameters of the multivariate Poisson process. This, in turn, leads to the joint probability distribution of the extreme values of the non-Gaussian processes, over a given time duration. For problems not amenable for analytical solutions, an algorithm is developed to determine these parameters numerically. The proposed extreme value distributions have applications in time-variant reliability analysis of randomly vibrating structural systems. The method is illustrated through three numerical examples and their accuracy is examined with respect to estimates from full scale Monte Carlo simulations of vector non-Gaussian processes.

Related Topics
Physical Sciences and Engineering Engineering Mechanical Engineering
Authors
, ,