Article ID Journal Published Year Pages File Type
8073419 Energy 2016 7 Pages PDF
Abstract
A flame fuel cell setup is designed and built based on a micro-tubular solid oxide fuel cell and a two-layer porous media burner. The stable operation limits of the burner are obtained by adjusting the inlet gas velocity and the equivalence ratio. Methane fuel-rich flames are stabilized inside the burner from the equivalence ratio of 1.4-1.8. The effects of the equivalence ratio and the gas velocity on the temperature distribution inside the burner and the combustion products are studied. Using a burner efficiency based on lower heating values, up to 41.1% of methane was converted to H2 and CO at the equivalence ratio of 1.7. The maximum mole fraction of H2 and CO reached 9.32% and 8.18% respectively. Flame fuel cell experiments are carried out with different equivalence ratios. The tubular SOFC is directly heated up and reduced by the fuel-rich flame. The maximum power generated by the flame fuel cell reached 0.55 W at the equivalence ratio of 1.7 and the inlet gas velocity of 0.15 m/s.
Related Topics
Physical Sciences and Engineering Energy Energy (General)
Authors
, , , , , , ,