Article ID Journal Published Year Pages File Type
8076667 Energy 2014 10 Pages PDF
Abstract
A novel marine rotary desiccant A/C (air-conditioning) system was developed and studied to improve energy utilization efficiency of ship A/C. The orthogonal experiment was first carried out to investigate the influence of various parameters of the marine rotary desiccant A/C system. During the orthogonal experiment the analysis of variance was used to exclude interference from the secondary influencing factor on system performance. The significant influencing factors of system were studied in great detail using the first and second laws of thermodynamics to find optimal setting parameters for best system performance. It is suggested from the analysis results that as regeneration temperature increases, the COPth (thermal coefficient of performance) and exergy efficiency of system (ηe) decreases by 46.9% and 38.8% respectively. They decrease in proportion to the increase of the temperature. ηe reaches its maximum value of about 23.5% when the inlet humidity ratio of process air is 22 g/kg. Besides, the exergy loss of system concentrates on the regeneration air heater, the desiccant wheel and the regeneration air leaving the desiccant wheel, which account for 68.4%-81% of the total exergy loss. It can be concluded that applying the marine rotary desiccant A/C in high-temperature and high-humidity marine environment is advantageous.
Related Topics
Physical Sciences and Engineering Energy Energy (General)
Authors
, ,