Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
8076799 | Energy | 2014 | 15 Pages |
Abstract
A novel combined system that combines a MEE-ABHP (multi-effect evaporation-absorption heat pump) with a VCR (vapor-compression refrigeration) cycle is proposed to simultaneously generate cooling and fresh water. In the combined system, the condenser of the VCR system is replaced by the MEE-ABHP system, where a portion of the fresh water produced in the last effect of the MEE (multi-effect evaporation) system is used as the refrigerant for the VCR system. In Part 1 of this two-part paper, model-based energy and cost analysis is developed to quantify and qualify the performance of the combined system. Parametric analysis is carried out to investigate the effects of absorber pressure (PA), temperature difference between effects of the MEE subsystem (ÎTMEE), temperature of the strong solution from absorber (T1), and temperature of the weak solution from generator (T4) on the performance of the system. In Part 2, thermo-economic and exergy analysis is conducted to evaluate the flexibility of the system for fuel allocation from different available power and heat energy sources. The results of Part 1 showed that the combined system can save 57.12%, 5.61%, and 25.6% in electric power, heat energy, and total annual cost compared to the stand-alone VCR and MEE-ABHP systems, respectively.
Related Topics
Physical Sciences and Engineering
Energy
Energy (General)
Authors
Iman Janghorban Esfahani, Yong Tae Kang, ChangKyoo Yoo,