Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
8078509 | Energy | 2014 | 11 Pages |
Abstract
A solar-powered transcritical CO2 (carbon dioxide) power cycle for reverse osmosis desalination based on the recovery of cryogenic energy of LNG (liquefied natural gas) is proposed. The system consists of a solar collector subsystem, a transcritical CO2 power cycle subsystem, a LNG subsystem and a RO (reverse osmosis) desalination subsystem. A thermal storage unit is introduced into the system to guarantee continuous and stable operation of the system. A mathematical model is developed to simulate the system based on several assumptions. The effects of several key thermodynamic parameters on the system performance are examined based on the performance criteria, including daily exergy efficiency, daily mechanical work output and daily fresh work output. Parametric optimization is conducted by genetic algorithm to maximize the daily fresh water output. The results show that the CO2 turbine inlet pressure has an optimal value to reach the daily maximum exergy efficiency under the given conditions. The daily exergy efficiency could decrease with an increase in condenser temperature, and increase with an increase in mass flow rate of oil and NG turbine inlet pressure. Through parametric optimization, the system can reach the daily exergy efficiency of 4.90% and provide 2537.33Â m3 fresh water per day under the given conditions.
Related Topics
Physical Sciences and Engineering
Energy
Energy (General)
Authors
Guanghui Xia, Qingxuan Sun, Xu Cao, Jiangfeng Wang, Yizhao Yu, Laisheng Wang,