Article ID Journal Published Year Pages File Type
8078654 Energy 2014 8 Pages PDF
Abstract
The current numerical study is conducted to analyze melting in a rectangular closed enclosure by subjecting the bottom wavy surface to a uniform temperature. The cavity vertical walls and the top wall are insulated while the bottom wall is maintained at temperature TB = 38.3 °C. The enclosure was filled by solid Gallium initially at temperature Ti = 28.3 °C. A numerical code is developed using an unstructured finite-volume method and an enthalpy porosity technique to solve for natural convection coupled to solid-liquid phase change. The validity of the numerical code used is ascertained by comparing our results with previously published results. The effect of the amplitude of the wavy surface on the flow structure and heat transfer characteristics is investigated in detail. It is found that the rate of the melting increases with the elevation in the magnitude of the amplitude value of the wavy surface.
Related Topics
Physical Sciences and Engineering Energy Energy (General)
Authors
, , , ,